ДЗ №7. Электростатика 2

Общая физика, М3200

- № 1 Имеются два тонких проволочных кольца радиуса R каждое, оси которых совпадают. Заряды колец равны q и -q. Найти разность потенциалов между центрами колец, отстоящими друг от друга на расстояние l. Ответ: $\Delta \varphi = \frac{2kq}{R} \left(1 \frac{1}{\sqrt{1+(l/R)^2}} \right)$
- **№** 2 Найти напряженность **E** поля, потенциал которого имеет вид: 1) $\varphi(x,y) = -axy$, где a постоянная, 2) $\varphi(\mathbf{r}) = \mathbf{a} \cdot \mathbf{r}$, \mathbf{a} постоянный вектор, \mathbf{r} радиус вектор до точки. **Ответ**: $\mathbf{E} = a(y\mathbf{i} + x\mathbf{j})$; $\mathbf{E} = \mathbf{a}$.
- № 3 Потенциал некоторого электрического поля имеет вид $\varphi = \alpha(xy z^2)$. Найти проекцию вектора \mathbf{E} на направление вектора $\mathbf{a} = \mathbf{i} + 3\mathbf{k}$ в точке M(2,1,-3). Ответ: $E_{\alpha} = -\frac{19}{\sqrt{10}}\alpha$.
- **№** 4 Найти потенциал следующих электрических полей: а) $\mathbf{E} = 2axy\mathbf{i} + a(x^2 y^2)\mathbf{j}$; б) $\mathbf{E} = ay\mathbf{i} + (ax + bz)\mathbf{j} + by\mathbf{k}$. Ответ: а) $\varphi = ay(y^2/3 x^2) + C$; б) $\varphi = -y(ax + bz) + C$.
- № 5 Диполь с электрическим моментом **p** находится на расстоянии **r** от длинной нити, заряженной равномерно с линейной плотностью λ . Найти силу **F**, действующую на диполь, если вектор **p** ориентирован: а) вдоль нити; б) по радиус-вектору **r**; перпендикулярно к нити и радиус-вектору **r**. **Ответ**: а) **F** = 0; б) $\mathbf{F} = -\frac{2k\lambda}{r^2}\mathbf{p}$; в) $\mathbf{F} = \frac{2k\lambda}{r^2}\mathbf{p}$.